Section 4-6 Completing the Square

Learning Goal:

To understand how to solve quadratic equations by completing the square. To understand how to rewrite functions by completing the square.

Essential Questions: What are the advantages of a quadratic function in vertex form? What are the advantages of a quadratic function in standard form? How is any quadratic function related to the parent function of $y = x^2$? How are the real solutions of a quadratic equation related to the graph of the related quadratic function?

Warm Up:

Factor each expression.

1.
$$16x^2 - 1$$

2.
$$5x^2 - 26x + 5$$
 3. $2x^2 + 13x - 7$

3.
$$2x^2 + 13x - 7$$

Without graphing, identify the vertex, axis of symmetry, and transformations from the parent function f(x) = |x|.

4.
$$y = |x+9| + 4$$

$$5. y = |2x - 7|$$

$$y = |x+9|+4$$
 5. $y = |2x-7|$ 6. $y = \frac{3}{4}|x|-1$

Simplify the expression.

7.
$$(x+4)(x+4)-3$$

$$(x+4)(x+4)-3$$
 8. $(2x-1)(2x-1)$

9.
$$(x-3)(x-3)$$

Vocabulary:

Square Root- The product of a number times itself

Square roots:

$\sqrt{1} = 1$	$\sqrt{4} = 2$	$\sqrt{9} = 3$	$\sqrt{16} = 4$	$\sqrt{25} = 5$	$\sqrt{36} = 6$	$\sqrt{49} = 7$	$\sqrt{64} = 8$	$\sqrt{81} = 9$	$\sqrt{100} = 10$
$\sqrt{121} = 11$	$\sqrt{144} = 12$	$\sqrt{169} = 13$	$\sqrt{196} = 14$	$\sqrt{225} = 15$	$\sqrt{256} = 16$	$\sqrt{289} = 17$	$\sqrt{324} = 18$	$\sqrt{361} = 19$	$\sqrt{400} = 20$

You Try:

1.
$$4x^2 + 10 = 46$$

2.
$$7x^2 - 10 = 25$$

3.
$$2x^2 + 9 = 13$$

4.
$$3x^2 + 5 = 20$$

5.
$$8x^2 - 3 = 29$$

6. You are painting a large wall mural. The wall length is 3 times the height. The area of the wall is 300 ft^2 . What are the dimensions of the wall? If each can of paint covers 22 ft^2 , will 12 cans be enough to cover the wall?

7. The lengths of the sides of a carpet have the ratio of 4.4 to 1. The area of the carpet is 1154.7 ft². What are the dimensions of the carpet?

Sometimes an equation shows a perfect square trinomial equal to a constant. To solve, factor the perfect square trinomial into the square of a binomial. Then find the square roots.

Perfect Square Trinomial:

You Try:

8.
$$x^2 - 14x + 49 = 25$$

$$9. x^2 + 12x + 36 = 9$$

$$x^{2}-14x+49=25$$
 9. $x^{2}+12x+36=9$ 10. $9x^{2}-12x+4=49$

11.
$$4x^2 + 36x + 81 = 16$$

11.
$$4x^2 + 36x + 81 = 16$$
 12. $x^2 + 2x + 1 = 36$ 13. $(x-7)^2 = 81$

13.
$$(x-7)^2 = 81$$

Completing the Square -

- Rewrite the equation in the form $x^2 + bx = c$. To do this, get all terms with the variable on one side of the equation and the constant on the other side. Divide all the terms of the equation by the coefficient of x^2 if it is not 1.
- Complete the square by adding $\left(\frac{b}{2}\right)^2$ to each side of the equation.
- Factor the trinomial
- Find the square roots.
- Solve for x.

Try Some:

What value completes the square for:

14.
$$x^2 + 14x$$

15.
$$x^2 + 6x$$

16.
$$x^2 + 38x$$

Solve the following equations by completing the square.

17.
$$x^2 - 8x - 5 = 0$$

$$x^2 - 8x - 5 = 0$$
 18. $x^2 - 10x = -11$

19.
$$2x^2 + 11x - 23 = -x + 3$$

20.
$$x^2 - 18x + 64 = 0$$
 21. $3x^2 - 42x + 78 = 0$ 22. $3x^2 + 18x - 3 = 0$

21.
$$3x^2 - 42x + 78 = 0$$

22.
$$3x^2 + 18x - 3 = 0$$

Writing in Vertex Form:

Rewrite each equation in vertex form. Name the vertex and y-intercept.

23.
$$y = x^2 + 10x - 9$$

23.
$$y = x^2 + 10x - 9$$
 24. $y = x^2 - 18x + 13$ 25. $y = x^2 + 32x - 8$

25.
$$v = x^2 + 32x - 8$$

Closure: How does completing the square help solve any quadratic equation?

Assignment: section 4.6 # 12,17,18,19,22,23,31,34,39,40,46,47,48,63(14 problems)