Section 5-1 Polynomial Functions

Learning Goal: To understand how to classify polynomials; to understand how to graph polynomial functions and describe end behavior.

Essential Questions: What does the degree of a polynomial tell you about its related polynomial function? For a polynomial function, how are factors, zeros, and x-intercepts related? For a polynomial equation, how are factors and roots related?

Warm Up:

1. Solve equation by factoring. $x^2 - x - 20 = 0$

2. Which equation is equivalent to $x^2 + 24x + 100 = -46$?

- A. $(x+12)^2 = -2$
- B. $(x 12)^2 = -2$
- C. $(x 12)^2 = 2$
- D. $(x+12)^2 = 2$

3. What is the transformation of the graph of $y = (x + 3)^2 - 2$ from its parent function $y = x^2$.

- A. 3 units left and 2 units down
- B. 3 units right and 2 units up
- C. 6 units right and 2 units up
- D. 2 units left and 3 units up

4. What is the axis of symmetry for the graph of the quadratic equation $y = -3x^2 - 12 + 12x$?

5. What is the vertex of y = -2|x+4| - 5

Vocabulary:

<u>Monomial</u> – a real number, a variable, or a product of a real number and one or more variables with whole number exponents.

Example:

Degree of a monomial - Is the sum of all exponents on variables

Example:

Polynomial – is a monomial or a sum of monomials

Example:

Degree of a polynomial – is the greatest degree among its monomial terms

Example:

Polynomial Function - a polynomial in the variable x defines a polynomial function of x

Example:

Standard form of a polynomial function- arranges the terms by degree in descending numerical order.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where *n* is a nonnegative integer and $a_n,...,a_0$ are real numbers

Degree	Name Using Degree	Polynomial Example	Number of Terms	Name Using Number of Terms
0	constant	5	1	monomial
1	linear	x + 4	2	binomial
2	quadratic	4x ²	1	monomial
3	cubic	$4x^3 - 2x^2 + x$	3	trinomial
4	quartic	$2x^4 + 5x^2$	2	binomial
5	quintic	$-x^5 + 4x^2 + 2x + 1$	4	polynomial of 4 terms

Example: $P(x) = 4x^3 + 3x^2 + 5x - 2$

You try:

Write each polynomial in standard form. What is the classification of each polynomial by degree? by number of terms?

1.	$3x + 9x^2 + 5$	2.	$4x - 6x^2 + x^4 + 10x^2 - 12$
3.	$3x^3 - x + 5x^4$	4.	$3 - 4x^5 + 2x^2 + 10$

Note: The degree of a polynomial function affects the shape of its graph and determines the maximum number of **turning points**, or places where the graph changes direction. It also affects the **end behavior**, or the direction of the graph to the far left and to the far right.

There are 4 types of end behaviors			
Up and UP	Down and Down	Down and Up	Up and Down
× /			

End Behavior of a Polynomial Function With Leading Term axⁿ

	n Even ($n \neq 0$)	n Odd
a Positive	Up and Up	Down and Up
a Negative	Down and Down	Up and Down

You Try:

Consider the leading term of each polynomial function. What is the end behavior of the graph?

5.
$$y = 4x^3 - 3x$$

6. $y = 2x^4 + 8x^3 - 8x^2 + 2$

7.
$$y = -6x^5 - 4x^2 + 3$$

8. $y = -8x^{10} - 13$

What is the graph of each cubic function? Describe the graph, including end behavior, turning points, and increasing/decreasing intervals.

$$9. \qquad y = -\frac{1}{2}x^3$$

10. $y = x^3 + 2x^2 - x - 2$

11.
$$y = \frac{1}{4}(x+3)^3 - 4$$

How do you determine the degree looking at a table?

- If your input or x-values differ by a constant, you can find the difference in the output or y-values.
- If it is constant the first time it is Linear
- If it is constant the second time it is quadratic
- If it is constant the third time it is cubic
- Etc

Try some:

What is the degree of the polynomial function that generates the data shown in the table?

12.

х	у
-2	-13
-1	-4
0	-1
1	2
2	11
3	32
4	71

13.

Х	у
-3	23
-2	-16
-1	-15
0	-10
1	-13
2	-12
3	29

Closure: What does the degree of a polynomial function tell you about its graph?

Assignment: section 5.1 # 11,14,17,19,20,22,23,26,33,39,44,45,54

(13 problems)