\qquad
\qquad

Section 5-1 Polynomial Functions

Learning Goal: To understand how to classify polynomials; to understand how to graph polynomial functions and describe end behavior.

Essential Questions: What does the degree of a polynomial tell you about its related polynomial function?
For a polynomial function, how are factors, zeros, and x-intercepts related?
For a polynomial equation, how are factors and roots related?

Warm Up:

1. Solve equation by factoring. $x^{2} \quad x \quad 20=0$
2. Which equation is equivalent to $x^{2}+24 x+100=46$?
A. $(x+12)^{2}=2$
B. $\quad\left(\begin{array}{ll}x & 12\end{array}\right)^{2}=2$
C. $\quad\left(\begin{array}{ll}x & 12\end{array}\right)^{2}=2$
D. $(x+12)^{2}=2$
3. What is the transformation of the graph of $y=(x+3)^{2} \quad 2$ from its parent function $y=x^{2}$.
A. 3 units left and 2 units down
B. $\quad 3$ units right and 2 units up
C. $\quad 6$ units right and 2 units up
D. 2 units left and 3 units up
4. What is the axis of symmetry for the graph of the quadratic equation $y=3 x^{2} \quad 12+12 x$?
5. What is the vertex of $y=2|x+4| 5$

Vocabulary:

Monomial - a real number, a variable, or a product of a real number and one or more variables with whole number exponents.

Example:

Degree of a monomial - Is the sum of all exponents on variables Example:

Polynomial - is a monomial or a sum of monomials
Example:

Degree of a polynomial - is the greatest degree among its monomial terms
Example:

Polynomial Function - a polynomial in the variable x defines a polynomial function of x
Example:

Standard form of a polynomial function- arranges the terms by degree in descending numerical order.

$$
P(x)=a_{n} x^{n}+a_{n 1} x^{n 1}+\ldots+a_{1} x+a_{0}
$$

where n is a nonnegative integer and a_{n}, \ldots, a_{0} are real numbers

Example: $P(x)=4 x^{3}+3 x^{2}+5 x \quad 2$

Degree	Name Using Degree	Polynomial Example	Number of Terms	Name Using Number of Terms
0	constant	5	1	monomial
1	linear	$x+4$	2	binomial
2	quadratic	$4 x^{2}$	1	monomial
3	cubic	$4 x^{3}-2 x^{2}+x$	3	trinomial
4	quartic	$2 x^{4}+5 x^{2}$	2	binomial
5	quintic	$-x^{5}+4 x^{2}+2 x+1$	4	polynomial of 4 terms

You try:

Write each polynomial in standard form. What is the classification of each polynomial by degree? by number of terms?

1. $3 x+9 x^{2}+5$
2. $4 x \quad 6 x^{2}+x^{4}+10 x^{2} \quad 12$
3. $3 x^{3} x+5 x^{4}$
4. $34 x^{5}+2 x^{2}+10$

Note: The degree of a polynomial function affects the shape of its graph and determines the maximum number of turning points, or places where the graph changes direction. It also affects the end behavior, or the direction of the graph to the far left and to the far right.

There are 4 types of end behaviors

There are 4 types of end behaviors			
Up and UP	Down and Down	Down and Up	Up and Down

Key Concept Polynomial Functions

End Behavior: Up and Up
Turning Points: $(-1.07,-1.04),(-0.27,0.17)$, and (0.22, -0.15)

The function is decreasing when $x<-1.07$ and $-0.27<x<0.22$. The function increases when $-1.07<x<-0.27$ and $x>0.22$.

$$
y=x^{3}
$$

End Behavior: Down and Up Zero turning points.

The function is increasing for all x.
$y=-x^{2}+2 x$

End Behavior: Down and Down
Turning Point: $(1,1)$
The function is increasing when $x<1$ and is decreasing when $x>1$.

$$
y=-x^{3}+2 x
$$

End Behavior: Up and Down
Turning Points: $(-0.82,-1.09)$ and ($0.82,1.09$)
The function is decreasing when $x<-0.82$ and when $x>0.82$. The function is increasing when $-0.82<x<0.82$.

End Behavior of a Polynomial Function With Leading Term ax ${ }^{n}$

	n Even $(n \neq 0)$	n Odd
a Positive	Up and Up	Down and Up
a Negative	Down and Down	Up and Down

You Try:
Consider the leading term of each polynomial function. What is the end behavior of the graph?
5. $y=4 x^{3} \quad 3 x$
6. $y=2 x^{4}+8 x^{3} \quad 8 x^{2}+2$
8. $y=8 x^{10} \quad 13$

What is the graph of each cubic function? Describe the graph, including end behavior, turning points, and increasing/decreasing intervals.
9. $y=\frac{1}{2} x^{3}$

10. $y=x^{3}+2 x^{2} \quad x \quad 2$

11. $y=\frac{1}{4}(x+3)^{3} \quad 4$

How do you determine the degree looking at a table?

- If your input or x-values differ by a constant, you can find the difference in the output or y-values.
- If it is constant the first time it is Linear
- If it is constant the second time it is quadratic
- If it is constant the third time it is cubic
- Etc

Try some:

What is the degree of the polynomial function that generates the data shown in the table?
12.

x	y
-2	-13
-1	-4
0	-1
1	2
2	11
3	32
4	71

13.

x	y
-3	23
-2	-16
-1	-15
0	-10
1	-13
2	-12
3	29

Closure: What does the degree of a polynomial function tell you about its graph?
\qquad
\qquad
\qquad
\qquad

