Section 6-2 Multiplying and Dividing Radical Expressions

Learning Goal: To understand how to multiply and divide radical expressions.

Essential Questions: How can you simplify the nth root of an expression that contains an nth root as a factor?

When you square each side of an equation, is the resulting equation equivalent to the original?

How are function and its inverse function related?

Warm Up:

Simplify each algebraic expression.

1.
$$\frac{14x^7y^9}{7x^4y^6}$$

$$2. \qquad \frac{3abc}{9b}$$

$$3. \qquad \frac{20x}{5x^3}$$

4.
$$(3x^5y)^2(5xy^7z)^3$$

Add or Subtract.

5.
$$\frac{2}{7} + \frac{4}{9}$$

6.
$$\frac{3}{4} + \frac{8}{9} - \frac{11}{3} + 5$$

Vocabulary:

Combining Radical Expressions: Products -

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$.

Try some:

Can you simplify the product of the radical expressions? Explain.

1.
$$\sqrt[3]{6} \cdot \sqrt{2}$$

2.
$$\sqrt[3]{-4} \cdot \sqrt[3]{2}$$

3.
$$\sqrt[4]{7} \cdot \sqrt[5]{7}$$

4.
$$\sqrt[5]{-5} \cdot \sqrt[5]{-2}$$

5.
$$\sqrt[4]{125} \cdot \sqrt[4]{405}$$

What is the simplest form of:

6.
$$\sqrt[3]{54x^5}$$

7.
$$\sqrt[3]{128x^7}$$

8.
$$\sqrt[3]{135x^5}$$

^{*}Note – Always write your radicals in simplest form.

Simplifying a product.

$$9. \qquad \sqrt{72x^3y^2} \bullet \sqrt{10xy^3}$$

$$10. \qquad \sqrt{45x^5y^3} \bullet \sqrt{35xy^4}$$

11.
$$\sqrt{45x^5y^2} \cdot \sqrt{50x^2y^4}$$

Combining Radical Expressions: Quotients

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$.

You try:

$$12. \qquad \frac{\sqrt{18x^5}}{\sqrt{2x^3}}$$

13.
$$\frac{\sqrt[3]{162y^5}}{\sqrt[3]{3y^2}}$$

$$14. \qquad \frac{\sqrt{50x^6}}{\sqrt{2x^4}}$$

15.
$$\frac{\sqrt[3]{189x^7}}{\sqrt[3]{7x^2}}$$

<u>Rationalize the denominator – To rationalize the denominator of an expression, rewrite it so that there are no radicals in any denominator and no denominators in any radical.</u>

Recall:

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\left(\sqrt{2}\right)}{\left(\sqrt{2}\right)} = \frac{\sqrt{2}}{2}$$

You Try:

Write the expression in simplest form.

16.
$$\sqrt[3]{\frac{4x^4}{32yz^3}}$$

17.
$$\sqrt[3]{\frac{5x^2}{12y^2z^2}}$$

18.
$$\frac{\sqrt[3]{7x}}{\sqrt[3]{5y^2}}$$

19.
$$\frac{\sqrt{26}}{\sqrt{3}}$$

$$20. \qquad \frac{\sqrt[3]{x}}{\sqrt[3]{2}}$$

$$21. \qquad \frac{\sqrt{7x^4y}}{\sqrt{5xy}}$$

Closure: How do you know if your radical expression is simplified?