# **Section 6-7 Inverse Relations and Functions**

Learning Goal:

To understand how to find the inverse of a relation or function.

**Essential Questions**: How can you simplify the nth root of an expression that contains an nth root as a factor?

When you square each side of an equation, is the resulting equation equivalent to the original?

How are function and its inverse function related?

## Warm Up:

- 1. Let  $f(x) = \sqrt{x} 4$  and g(x) = x + 6. What are f + g and f g? What are their domains?
  - a) f + g

b) f-g

- 2. Let  $f(x) = x^2 16$  and g(x) = x 4. What are  $f \cdot g$  and  $\frac{f}{g}$ ? What are their domains?
  - a)  $f \cdot g$

b)  $\frac{f}{g}$ 

3. Let f(x) = x - 2 and  $g(x) = x^3$ . What is  $(f \circ g)(2)$ ?

### **Vocabulary:**

**Relation:** a set of ordered pairs (x, y)

**Function:** a function is a relation in which each element of the domain corresponds with exactly one element in the range.

**Domain:** x - values

**Range:** y-values

**Inverse relation:** is a set of ordered pairs (y, x)

*Note:* if both a relation and its inverse happen to be functions, they are **inverse functions**.

### You Try:

1. What is the inverse of relation s?

#### Relation s

| X | y  |
|---|----|
| 0 | -1 |
| 2 | 0  |
| 3 | 2  |
| 4 | 3  |

2. What are the graphs of s (mark with a dot) and its inverse(mark with an x).



3. What is the inverse of relation v?

Relation v

| X  | y |
|----|---|
| -2 | 2 |
| -1 | 0 |
| 0  | 3 |
| 1  | 0 |

4. What are the graphs of v (mark with a dot) and its inverse(mark with an x).



Note: The graphs of a relation and its inverse are the reflections of each other in the line y = x. If you describe a relation of function by an equation in x and y, you can switch x and y to get an equation of the inverse.

5. What is the inverse of the relation described by  $y = x^2 - 1$ ?

6. What is the inverse of the relation described by y = 2x + 8?

7. What is the inverse of the relation described by  $y = 5x^2 + 2$ ?

Graphing a relation and its inverse.

8. What are the graphs of  $y = x^2 - 1$  and its inverse,  $y = \pm \sqrt{x+1}$ ?



9. What are the graphs of y = 2x + 8 and its inverse?



**Inverse of a function f** – denoted by  $f^{-1}$ . Read "the inverse of f" or "f inverse".

The notations f(x) is used for functions but the relation  $f^{-1}$  may not be a function.

### **Finding and Inverse function.**

- 1. What are the domain and range of a function?
- 2. Find  $f^{-1}$ , the inverse of f.
- 3. What are the domain and range of  $f^{-1}$ ?
- 4. Is  $f^{-1}$  a function? Yes, if for every x in the domain, there is only one y in the range. No, if 1 domain has two different ranges.

# Example:

Consider the function  $f(x) = \sqrt{x-2}$ .

- a) What are the domain and range of f?
- b) What is  $f^{-1}$ , the inverse of f?
- c) What are the domain and range of  $f^{-1}$ ?
- d) Is  $f^{-1}$  a function? Explain.

# You Try:

- 10. Consider the function g(x) = 6 4x.
  - a) What are the domain and range of g?
  - b) What is  $g^{-1}$ , the inverse of g?
  - c) What are the domain and range of  $g^{-1}$ ?
  - d) Is  $g^{-1}$  a function? Explain.

**One-to-one function:** is a function for which each y-value in the range corresponds to exactly one x-value in the domain. A one-to-one function f has an inverse  $f^{-1}$  that is also a function.

**Composition of Inverse Functions:** If f and  $f^{-1}$  are inverse functions, then

 $(f^{-1} \circ f)(x) = x$  and  $(f \circ f^{-1})(x) = x$  for x in the domains of f and  $f^{-1}$ , respectively

Your try:

11. For  $f(x) = \frac{1}{x-1}$ , what is each of the following?

a) 
$$f^{-1}(x)$$

b) 
$$(f \circ f^{-1})(1)$$

c) 
$$(f^{-1} \circ f)(1)$$

12. For  $g(x) = \frac{4}{x+2}$ , what is each of the following?

a) 
$$g^{-1}(x)$$

b) 
$$\left(g\circ g^{-1}\right)(0)$$

c) 
$$\left(g^{-1}\circ g\right)(0)$$

| Closure: | How can you tell from the graph of a function whether its inverse is a function? |  |
|----------|----------------------------------------------------------------------------------|--|
|          |                                                                                  |  |
|          |                                                                                  |  |
|          |                                                                                  |  |
|          |                                                                                  |  |
|          |                                                                                  |  |
|          |                                                                                  |  |

Assignment: section 6.7 # 8,11,13,15,21,23,26,27,31,35,38,42,44,52,55 (15 problems)