Name: Date: #	#
---------------	---

Section 7-3 Logarithmic Functions as Inverses

Learning Goal: To understand how to write and evaluate logarithmic expressions; to graph

logarithmic functions.

Essential Questions: How do you model quantity that changes regularly over time by the same

percentage?

How are exponents and logarithms related?

How are exponential functions and logarithmic functions related?

Warm Up:

1. How does the graph of $y = 2 \cdot 2^x$ compare to the graph f the parent function?

2. How does the graph of $y = 4^{(x-6)}$ compare to the graph of the parent function?

3. A pot of water is heated to $200^{\circ}F$. The table shows a typical temperature reading for the pot. The room temperature is $70^{\circ}F$. How long will it take the water to cool to $150^{\circ}F$?

Time	Temp
(min)	(°F)
0	200
5	164
10	140
15	124
20	108
25	98

4. You have \$10,000. You place it in an account that pays 6.1% annual interest compounded continuously. How much will you have in 20 years? Round the answer to the nearest dollar.

5. Find the invers of $f(x) = 5x^3 + 1$. Is the inverse a function?

Vocabulary:

<u>Logarithm-</u> base b of a positive number x satisfies the following definition.

For b > 0,
$$b \ne 1$$
, $\log_b x = y$ if and only if $b^y = x$

You can read $\log_b x$ as "log base b of x". In other words, the logarithm y is the exponent to which b must be raised to get x.

How to write logarithmic functions in exponential form and vice versa:

 $Logarithmic \leftrightarrow Exponential$

$$\log_b x = y \qquad \iff \qquad b^y = x$$

What is the logarithmic form of each equation?

1.
$$100 = 10^2$$

2.
$$81 = 3^4$$

3.
$$36 = 6^2$$

$$4. \qquad \frac{8}{27} = \left(\frac{2}{3}\right)^3$$

5.
$$8^0 = 1$$

6.
$$4^3 = 64$$

What is the value of each logarithm?

7.
$$\log_8 32$$

8.
$$\log_5 125$$

9.
$$\log_4 32$$

10.
$$\log_{64} \frac{1}{32}$$

Common Logarithm: is a logarithm with base 10. You can write a common logarithm $\log x$, without showing the 10.

<u>Logarithmic Function:</u> is the inverse of an exponential function.

The graph of the inverse function are reflections of each other across the line y=x. You can graph $y = \log_b x$ as the inverse of $y = b^x$.

Note: $y = \log_b x$ Domain: x > 0Range: all real # y-intercept – none

vertical asymptote: x = 0

11. What is the graph of $y = \log_4 x$? Describe the domain, range, y-intercept and asymptotes?

X	y
-2	
-1	
0	
1	
2	

12. What is the graph of $y = \log_6 x$? Describe the domain, range, y-intercept and asymptotes?

X	y
-2	
-1	
0	
1	
2	

+
+
+
—
\neg
_
\rightarrow
-
\neg
+
-
+
_

13. Suppose you use the following table to help you graph $y = \log_2 x$. (Recall that if $y = \log_2 x$, then $2^y = x$.) Complete the table. Explain your answers.

X	$2^y=x$	У
-1	$2^{y} = -1$	
0	$2^{y} = 0$	
1	$2^{y} = 1$	
2	$2^{y} = 2$	

Translating the graph of the parent function $y = log_b x$ to $y = log_b (x - h) + k$

Concept Summary Families of Logarithmic Functions Parent functions: $y = \log_b x, b > 0, b \neq 1$ Stretch (|a| > 1)Compression (Shrink) (0 < |a| < 1)Reflection (a < 0) in x-axis Translations (horizontal by h; vertical by k) $y = \log_b (x - h) + k$ All transformations together $y = a \log_b (x - h) + k$

14. How does the graph of $y = \log_4(x-3) + 4$ compare to the graph of the parent function?

x	Y

15. Without graphing, how does the graph each function compare to the graph of the parent function?

a)
$$y = \log_2(x+4) - 3$$

$$b) y = 5\log_2 x$$

$y = 5\log_2 x$
<u> </u>

16.	How does the graph of $y = \frac{3}{4} \log x - 2$ compare to the graph of the parent function?
Closur	Uovy can you use the properties of synaponts to evaluate the logarithm?
Ciosui	re: How can you use the properties of exponents to evaluate the logarithm?
How c	can you use the graph of an exponential function to graph its inverse?
Assign	nment: section 7.3 # 12,13,17,19,20,22,25,38,40,41,42,43,61,64,65 (15 problems