Algebra 2 - Chapter 7 REVIEW

Show all work for credit!!!

1. Graph the equation.

41/9 14/3

Without graphing, determine whether each equation represents exponential growth or whomential decay. Then find the y-intercept. y = ab2.

a)
$$y = 10^{-10}$$

$$c) y = 7 \left(\frac{2}{5}\right)^x$$

3. Mr. Andersen put \$1000 into an account that earns 4.5% annual interest. The interest is compounded annually and there are no withdrawals. How much money will be in the account at the end of 30 years?

$$A = ?$$
 $A(30) = 1000(1+.045)^{30}$

4. A manufacturer bought a new rolling press for \$48,000. It has depreciated in value at an annual rate of 15%. What is its value 5 years after purchase?

$$y = ?$$
 $A(5) = 48000(.85)^5$
 $b = 1 - .15 = .85$

$$X = 5$$

5. You place \$900 in an investment account that earns 7.5% interest compounded continuously. Find the balance after 5 years.

6. You deposit \$7300 in an account that earns 1.25% annual interest. Find the account balance after 5 years if this interest is compounded monthly.

$$A = 7300(1 + \frac{0125}{12})^{12}$$

$$log_b y = x$$
 $b^x = y$

7. Write the equation in logarithmic form: $9^3 = 729$

8. Evaluate each logarithm.

a)
$$\log_4 256 = \chi$$

$$4^{x} = 256$$
 $4^{x} = 4^{4}$

b)
$$\log_{27} 9 = x$$

$$3 \times = 2$$

$$\times = 2/3$$

9. Write each expression as a single logarithm.

a)
$$\log 8 + \log 3$$
 $\log 24$

b)
$$6\log_2 x + 3\log_2 x$$

$$\log_a \times^b \cdot \chi^3$$

$$\log_a \times^9$$

c)
$$\log_5 4 + 4\log_5 2 - \log_5 x$$

$$log_5 \frac{4 \cdot 2^4}{x} = log_5 \frac{4 \cdot 16}{x} = log_5 \frac{64}{x}$$

10. Expand each logarithm.

a)
$$\log_b 2x^2y^3$$

b)
$$\log_b \frac{\sqrt[3]{x^3}}{7} = \log_b \frac{\chi^{3/s}}{7}$$

$$\int \frac{3}{5} \log_b \chi - \log_b 7$$

11. Use the change of base formula to evaluate the expression.

a)
$$\log_4 13$$
 $\log_4 13$ Ω 1.85

12. The first permanent English colony in America was established in Jamestown, Virginia, in 1607. From 1620 through 1780, the population P (in thousands) of colonial America can be modeled by the equation P = 8863(1.04)' where t is the number of years since 1620. When was the population

of colonial America about 345,000?
$$P = 8863(1.04)^{t}$$

$$\frac{345000}{8863} = \frac{8863(1.04)^{t}}{8863}$$

$$38.93 \times 1.04^{t}$$

$$\log 38.93 \times \frac{1.04^{t}}{\log 1.04}$$

$$\log 1.04 \times \log 1.04$$

13. A parent increases a child's allowance by 22% each year. If the allowance is \$30 now, when will it double?

$$\frac{60}{30} = \frac{30(1.23)^{\times}}{30}$$

$$2 = 1.23^{\times}$$

$$\log 2 = \frac{1}{2} \times \log 1.23$$

$$\log 1.23 \qquad \log 1.23$$

$$\log 1.23 \qquad \log 1.23$$

$$2 \times 3.49$$

In about 3.5 years

14. Solve each equation. Check for extraneous solutions.

a)
$$\sqrt[3]{y^2} = 4$$
 or $y^2/3 = 4$ b) $2 - \frac{1}{2}$ $(y^{2/3}) = (4)^{3/2}$ $\frac{1}{2}$ $\frac{1}{2}$

b)
$$2-4^{x} = -62$$

$$\frac{-2}{-2}$$

$$\frac{-4^{3}}{2} = -42$$

$$2-4^{3} = -42$$

$$2-4^{4} = -42$$

$$2-4^{4} = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

$$-42 = -42$$

Cont: Solve each equation. Check for extraneous solutions

e)
$$e^{x}=5$$
 $e^{1.41}=5$
 $X \text{ ARE} = 1.65$ $5 \times 5 \times 1.61$
 $X = 1.61$

g)
$$\log 5x + \log(x-1) = 2$$

$$10^2 = 5x^3 - 5x$$

$$100 = 5x^{2} - 5x$$

$$0 = 5x^2 - 5x - 100$$

$$5(x^2 - x - 20)$$

$$x = 5$$
 $x = -4$ extrareal

$$\log_{3}(x+1) = 4$$

$$\log_{3}(80+1) = 4$$

f)
$$\log x + \log(x+3) = 1$$

 $\log (x \cdot (x+3)) = 1$
 $\log x^2 + 3x = 1$
 $10^1 = x^2 + 3x$
 -10 -10
 $x^2 + 3x - 10 = 0$
 $(x+5)(x-2) = 0$
 $x=-5$ $x=2$
 $x+\cos(x)$