Section 10-5 Hyperbolas

Learning Goal:

To understand how to write the equation of a hyperbola; to find and use the foci of a hyperbola and to graph a hyperbola.

Essential Questions:

What is the intersection of a cone and a plane parallel to a line along the side of a cone? What is the difference between the algebraic representations of ellipses and hyperbolas? Does the graph of a conic section ever intersect its focus or foci? Which conic sections are symmetric? How can you identify their axes of symmetry? Compare the standard-form equations of the conic sections. How can you identify each type of conic from the equation?

Warm Up:

1. Which function best represents the graph?

a)
$$y = \frac{1}{x - 1}$$

b)
$$y = \frac{x}{x - 1}$$

c)
$$y = \frac{1}{x+1}$$

d)
$$y = \frac{x}{x+1}$$

2. Which function best represents the graph?

a)
$$f(x) = 2 \cdot 3^{-x}$$

a)
$$f(x) = 2 \cdot 3^{-x}$$
 b) $f(x) = -2 \cdot 3^{x}$

c)
$$f(x) = 2 \cdot 3^x$$

c)
$$f(x) = 2 \cdot 3^x$$
 d) $f(x) = -2 \cdot 3^{-x}$

3. What is the equation of a parabola with the following characteristics?

$$\frac{3}{2x+10} + \frac{5}{4} = \frac{7}{x+5}$$

Axis of symmetry: x = -3

Range: all real numbers less than or equal to 4

a)
$$y = -(x-4)^2 - 3$$
 b) $y = -(x+3)^2 + 4$

4.

Solve:

 $-\frac{50}{11}$ b) $-\frac{9}{5}$

- c) $y = (x-4)^2 3$ d) $y = (x+3)^2 + 4$

- c)
- d) $-\frac{3}{5}$

Vocabulary:

Hyperbola - a set of points *P* in a plane such that the absolute value of the difference between the distances from *P* to two fixed points F_1 and F_2 is a constant k

Focus of an hyperbola - (plural: foci) one of the two fixed points

Vertex - the turning point of each branch of the hyperbola

Transverse axis – the segment connecting the two vertices

Axis of symmetry – the transverse axis lies on this axis

Center of the hyperbola – the midpoint between the two vertices, which is also the midpoint between the two foci.

Standard for of the equation of a hyperbola with center at (0, 0) is:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{or} \quad \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

$$c^2 = a^2 + b^2$$

Writing and graphing the equation of a hyperbola.

1. What is an equation in standard form of a hyperbola centered at the origin has vertices (± 4 , 0) and one focus (5,0). What is the sketch of the hyperbola.

2. What is an equation in standard form of a hyperbola centered at the origin has vertices $(0, \pm 4)$ and one foci $(0, \pm 5)$. What is the sketch of the hyperbola.

3. What is an equation in standard form of a hyperbola centered at (0,0) has vertices $(\pm 2,0)$ and one focus (3,0). What is the sketch of the hyperbola.

Graph each hyperbola. Find the coordinates and identify the foci

4.
$$9y^2 - 7x^2 = 63$$

5.
$$\frac{x^2}{64} - \frac{y^2}{17} = 1$$

Analyzing a hyperbola from its equation

6. What are the vertices, foci, and asymptotes of the hyperbola with equation $4y^2 - x^2 = 16$? Sketch the graph.

Closure: What parts of a hyperbola must be included on its graph
