\qquad \# \qquad

Section 4-1 Quadratic Functions and Transformations

Learning Goal: To understand how to identify and graph quadratic functions.
Essential Questions: What are the advantages of a quadratic function in vertex form?
What are the advantages of a quadratic function in standard form?
How is any quadratic function related to the parent function of $y=x^{2}$?
How are the real solutions of a quadratic equation related to the graph of the related quadratic function?

Warm Up:

Solve.

1. $\frac{x+2}{4}=\frac{2 x \quad 1}{3}$
2. $3(4 x-2)=6 x$
3. Simplify the expression: $\quad 3[2(x-3)+2]+5(x-3)$
4. Solve the inequality: $2<10-4 d<6$

Vocabulary:

Quadratic Function - Is an equation that can be written in the form, $f(x)=a x^{2}+b x+c$, where $a \neq 0$.

Parabola - a graph of a quadratic function; a "U" shaped graph.
Parent Function of a quadratic - $f(x)=x^{2}$
Vertex form of a quadratic - $f(x)=a(x-h)^{2}+k$, where $a \neq 0$.

Axis of Symmetry - is a line that divides the parabola into two mirror images.

Equation of the axis of symmetry - $\quad \mathrm{x}=\mathrm{h}$

Vertex of the parabola - is the point (h, k). (note: the intersection of the parabola and its axis of symmetry)

Ex: $f(x)=x^{2}$

Ex: $f(x)=a(x-h)^{2}+k$,

In both the parent function and vertex form, the "a" tells you information about the parabola.

If " a " is positive $(a>0)$ the parabola opens up and the y-coordinate of the vertex is the minimum value.
If "a" is negative $(a<0)$ the parabola opens down the y-coordinate of the vertex is the maximum value.

Reflection: a and -a (opens up or down)
Stretch: a > 1 (moves the y value higher as if the parabola were stretched up)
Compression: $0<\mathrm{a}<1$ (the parabola is shrinking)

Graph each function. How is the each graph a translation of $f(x)=x^{2}$?

1. $f(x)=x^{2}-3$

2. $g(x)=(x+1)^{2}$

3. $h(x)=-\frac{1}{4} x^{2}$

1-3-5 method for graphing a quadratic equation:

1. Identify the " a " of the equation
2. Multiply the "a" by $1,3,5$ always put your solution over 1
3. Graph: start at the vertex and move top number up/down and bottom number left/right.

Example: $\quad f(x)=2 x^{2}-4$

1. $\mathrm{a}=2$
2. $2(1,3,5) 2,6,10$
$\frac{2}{1}, \frac{6}{1}, \frac{10}{1}$
3. Vertex is (h, k) or $(0,-4)$

Interpreting Vertex Form:

For $y=3(x-4)^{2}-2$, what are the vertex, the axis of symmetry, the maximum or minimum value, the domain and range?

1. Compare: $y=3(x-4)^{2}-2$

$$
y=a(x-h)^{2}+k
$$

2. The vertex is $(\mathrm{h}, \mathrm{k})=(4,-2)$.
3. The axis of symmetry is $x=h$, or $x=4$.
4. Since $\mathrm{a}>0$, the parabola opens upward. $\mathrm{k}=-2$ is the minimum value.
5. Domain: All real numbers. There is no restriction on the value of x. Range: All real numbers ≥-2, since the minimum value of the function is -2 .
You Try:
6. For, $y=2(x+3)^{2}+2$ what are the vertex, the axis of symmetry, the maximum or minimum value, the domain and range?

Graph each function. How is the each graph a translation of $y=a(x-h)^{2}+k$?
5. $y=(x+4)^{2}-2$
6. $y=-2(x-1)^{2}+3$

7. $y=\frac{1}{2}(x+6)^{2}-2$

8. Write an equation in vertex form for a quadratic with maximum $y=7$; axis of symmetry of $x=-3$, and is stretched. Then state the vertex, domain and range of the function.

Closure: How can you use a quadratic function written in vertex form to describe the graph of the parabola?

