Practice

Solving Square Root and Other Radical Equations

Form G

Solve the circled produms. Check all

Solutions

Solve.

$$(1.)5\sqrt{x} + 2 = 12$$

4. $\sqrt{2x-5}=7$

7. $\sqrt{3x-2}-7=0$

(2)
$$3\sqrt{x} - 8 = 7$$

$$2\sqrt{3}\sqrt{x}-8=7$$

$$\sqrt{5}\sqrt{3}x-3-6=0$$

$$\sqrt{3x-3}-6=0$$

8.
$$\sqrt{4x+3}+2=5$$

9.
$$\sqrt{33-3x}=3$$

3. $\sqrt{4x} + 2 = 8$ 6. $\sqrt{5 - 2x} + 5 = 12$

$$(10.)\sqrt[3]{2x+1} = 3$$

11.
$$\sqrt[3]{13x-1}-4=0$$

12.
$$\sqrt[3]{2x-4} = -2$$

Solve.

13.
$$(x-2)^{\frac{1}{3}} = 5$$

$$(2x+1)^{\frac{1}{3}} = -3$$

15.
$$2x^{\frac{1}{4}} = 16$$

16.
$$2x^{\frac{1}{3}} - 2 = 0$$

17.
$$x^{\frac{1}{2}} - 5 = 0$$

$$(18.)4x^{\frac{1}{2}} - 5 = 103$$

19.
$$(7x-3)^{\frac{1}{2}}=5$$

20.
$$4x^{\frac{1}{2}} - 5 = 27$$

21.
$$x^{\frac{1}{6}} - 2 = 0$$

22.
$$(2x+1)^{\frac{1}{2}}=1$$

$$(23.)(x-2)^{\frac{2}{3}}-4=5$$

24.
$$3x^{\frac{4}{3}} + 5 = 53$$

25. The formula $P = 4\sqrt{A}$ relates the perimeter P, in units, of a square to its area A, in square units. What is the area of the square window shown below?

- 26. The formula $A = 6V^{\frac{2}{3}}$ relates the surface area A, in square units, of a cube to the volume V, in cubic units. What is the volume of a cube with surface area 486 in.2?
- 27. A mound of sand at a rock-crushing plant is growing over time. The equation $t = \sqrt[3]{5V - 1}$ gives the time, t, in hours, at which the mound has volume V, in cubic meters. When is the volume equal to 549 m³?

6-5 Practice (continued)

inued) Form G

Solving Square Root and Other Radical Equations

28. City officials conclude they should budget s million dollars for a new library building if the population increases by p thousand people in a ten-year census.

The formula $s = 2 + \frac{1}{3}(p+1)^{\frac{2}{3}}$ expresses the relationship between population

and library budget for the city. How much can the population increase without the city going over budget if they have \$5 million for a new library building?

Solve. Check for extraneous solutions.

$$(29.)\sqrt{x+1} = x-1$$

$$(31) (x+7)^{\frac{1}{2}} = x-5$$

33.
$$\sqrt{x+2} = x-18$$

35.
$$(2x+1)^{\frac{1}{2}} = -5$$

37.
$$\sqrt{x+1} = x+1$$

39.
$$\sqrt[3]{2x-4} = -2$$

$$41) \sqrt{4x+2} = \sqrt{3x+4}$$

43.
$$2(x-1)^{\frac{1}{2}} = (26+x)^{\frac{1}{2}}$$

$$(45.)\sqrt{2x}-\sqrt{x+1}=1$$

47.
$$(7-x)^{\frac{1}{2}} = (2x+13)^{\frac{1}{2}}$$

$$(49.)\sqrt{x+9} - \sqrt{x} = 1$$

$$(30)\sqrt{2x+1} = -3$$

32.
$$(2x-4)^{\frac{1}{2}} = x-2$$

$$(34.)\sqrt{x} + 6 = x$$

36.
$$(x+2)^{\frac{1}{2}} = 10-x$$

38.
$$\sqrt{9-3x} = 3-x$$

$$(40.)$$
 $2\sqrt[5]{5x+2}-1=3$

42.
$$\sqrt{7x-6} - \sqrt{5x+2} = 0$$

44.
$$(x-1)^{\frac{1}{2}} - (2x+1)^{\frac{1}{4}} = 0$$

46.
$$\sqrt{7x-1} = \sqrt{5x+5}$$

48.
$$(x-7)^{\frac{1}{2}} = (x+5)^{\frac{1}{4}}$$

50.
$$\sqrt[3]{8x} - \sqrt[3]{6x-2} = 0$$

- 51. A clothing manufacturer uses the model $a = \sqrt{f+4} \sqrt{36-f}$ to estimate the amount of fabric to order from a mill. In the formula, a is the number of apparel items (in hundreds) and f is the number of units of fabric needed. If 400 apparel items will be manufactured, how many units of fabric should be ordered?
- 52. What are the lengths of the sides of the trapezoid shown at the right if the perimeter of the trapezoid is 17 cm?

6.5 Practice G #1, 2,5,6,10,14,18, 23,29,30,31,34,40,41,45,49

$$0.5\sqrt{x} + 2 = 12$$

$$-2 - 2$$

$$5\sqrt{x} = 10$$

$$5 = 5$$

$$(\sqrt{x})^{2} = (2)^{2}$$

$$23\sqrt{x} - 8 = 7$$

$$+8 +8$$

$$3\sqrt{x} = 15$$

$$3\sqrt{x} = 5$$

$$(\sqrt{x})^2 = (5)^2$$

$$x = 25$$

(5)
$$\sqrt{3}x-3 - 6 = 0$$

 $+6 +6$
 $(\sqrt{3}x-3)^2 = (6)^2$
 $3x-3 = 36$
 $+3 +3$
 $3x = 39$
 3
 $x = 13$

(a)
$$\sqrt{5-2x} + 5 = 12$$

 $-5 - 5$
 $(\sqrt{5-2x})^2 = (7)^2$
 $5-2x = 49$
 $-5 - 5$
 $-2x = 49$
 $(x = -22)$

$$(3)^{3} = (3)^{3}$$

$$2x + 1 = 27$$

$$-1 -1$$

$$2x = 26$$

$$x = 13$$

$$(4)((3x+1)^{1/3})^{3} = (3)^{3}$$

$$2x+1 = -27$$

$$-1 \qquad -1$$

$$2x = -28$$

$$X = -14$$

(8)
$$4 \times \frac{3/2}{2} - 5 = 103$$

$$+5 + 5$$

$$\frac{4 \times \frac{3/2}{2}}{4} = \frac{108}{4}$$

$$(\times^{3/2})^{\frac{1}{3}} = (\times^{2})^{\frac{2}{3}}$$

$$(\times^{3/2})^{\frac{1}{3}} = (\times^{2})^{\frac{2}{3}}$$

$$(\times^{3/2})^{\frac{1}{3}} = (\times^{2})^{\frac{2}{3}}$$

$$(33) (x-a)^{2/3} - 4 = 5$$

$$+ 4 + 4$$

$$(x-a)^{2/3} = (9)^{3/2}$$

$$x-2 = 27 x = 2 + 27$$

$$+ 2 + 2 x = 29 x = -25$$

$$(39)(\sqrt{x+1})^{2} = (x-1)^{2}$$

$$x+1 = x^{2}-2x+1$$

$$-x-1 = -x-1$$

$$0 = x^{2}-3x$$

$$0 = x(x-3)$$

$$x-3 = 0$$

$$x=0$$

$$x=3$$

3 = -3 X

check: VO+1 = 0-1

$$(30)(\sqrt{3}x+1)^2 = (-3)^2$$
 Check: $\sqrt{3}(u)+1 = -3$
 $\sqrt{3}x+1 = 9$ $3 = -3$ $x = -3$

$$(31)((x+7)^{1/2})^{2} = (x-5)^{2}$$

$$X+7 = x^{2}-10x+25$$

$$-x-7 - x-7$$

$$0 = x^{2}-11x+18$$

$$0 = (x-9)(x-2)$$

$$(x=9) x>2$$

$$(34) \int x + 40 = x$$

$$-60 - 60$$

$$(\sqrt{x})^{2} = (x - 6)^{2}$$

$$x = x^{2} - 12x + 36$$

$$-x - y$$

$$0 = x^{2} - 13x + 36$$

$$0 = (x - 4)(x - 9)$$

$$x = 9$$

$$\frac{40}{2} = \frac{55 \times +2}{2} = \frac{1}{2}$$

$$\frac{55 \times +2}{2} = \frac{1}{2}$$

$$\frac{55 \times +2}{2} = \frac{1}{2}$$

$$\frac{55 \times +2}{2} = \frac{1}{2}$$

$$\frac{5 \times +2}{2} = \frac{1}{2}$$

check:

$$(9+7)^{1/2} = 9-5$$
 $16^{1/2} = 4$
 $4 = 4 \times 1$
 $(9+7)^{1/2} = 3-5$

$$(2+7)^{1/2} = 2-5$$

 $9^{1/2} = -3$
 $3 = -3 \times$

Check:
$$54 + 6 = 4$$

 $2 + 6$
 $8 = 4$ X

$$\sqrt{9} + 6 = 9$$

 $3 + 6 = 9$
 $9 = 90$

check:

$$25560+2 -1=3$$

$$2532 -1=3$$

$$2.3 -1=3$$

$$4-1=3$$

$$3=31$$

$$(4) (\sqrt{4x+2})^{2} = (\sqrt{3x+4})^{2}$$

$$(4x+2)^{2} = (\sqrt{3x+4})^{2}$$

$$(4x+4)^{2} = (\sqrt{3x+4})^{2}$$

$$(4x+4)^$$

$$-4x-4 -4x -4$$

$$x^{2}-8x = 0$$

$$x(x-8) = 0$$

$$x = 8$$

$$\frac{(9) \int x+9 - \int x}{(1+ \int x)^{2}}$$

$$x+9 = 1 + \int x + \int x + x$$

$$\frac{x}{x} + \frac{1}{x} = \frac{1}{x}$$

$$\frac{x}{x} = \frac{1}{x}$$

$$\frac{x}{x} = \frac{1}{x}$$

$$\frac{x}{x} = \frac{1}{x}$$

$$\frac{x}{x} = \frac{1}{x}$$

check:

$$\sqrt{4(a) + a} = \sqrt{3(a) + 4}$$
 $\sqrt{10} = \sqrt{10}$

$$\sqrt{a(8)} - \sqrt{8+1} = 1$$
 $\sqrt{a(8)} - \sqrt{8+1} = 1$
 $\sqrt{a(8)} - \sqrt{9} = 1$
 $\sqrt{10} - \sqrt{9} = 1$
 $\sqrt{10} - \sqrt{9} = 1$