Quarter 2 Benchmark Review

- 1. Sketch each function. Complete the chart with the required information.
- a) $f(x) = x^2(x-1)$

Leading Coefficient:	Degree: X ³ Cubic
End Behavior:	
Zeros (list multiplicity in parentheses)	Rough sketch of graph:
x=0 (muy of 2)	bourses 1
X = 1	
	Υ '

b) f(x) = -x(x-1)(x+2)

Leading Coefficient:	Degree: X3 Cubic
End Behavior: 1	
Zeros (list multiplicity in parentheses)	Rough sketch of graph:
X=0 X=1 X=-2	

c)
$$f(x) = x(x+4)(x-1)^2$$

Leading Coefficient:	Degree: X4 Quartic
End Behavior:	
Zeros (list multiplicity in parentheses)	Rough sketch of graph:
X= 0	1
X = -4	
X=1 (muy of 2)	-4 o rounces

3) Given one zero find all the zeros:

a)
$$f(x)=9x^3+10x^2-17x-2$$
; -2 $Q_{X}^2-8_{X}-1=0$
 -2 $Q_{X}^2-8_{X}-1=0$ $Q_{X}^2-8_{X}-1=0$
 $Q_{X}^2-8_{X}-1=0$ $Q_{X}^2-8_{X}-1=0$
 $Q_{X}^2-8_{X}-1=0$ $Q_{X}^2-8_{X}-1=0$
 $Q_{X}^2-8_{X}-1=0$ $Q_{X}^2-8_{X}-1=0$
 $Q_{X}^2-8_{X}-1=0$ $Q_{X}^2-1=0$ Q_{X}

$$(9x + 1) \times -1) = 0$$

b)
$$f(x)=x^3-14x^2+47x-18$$
; 9
Q=1
Q=1
D 9 -45 18
C=2
C=2

Given one zero find all the zeros:

c)
$$f(x) = x^3 + x^2 + 2x + 24$$
; -3

$$\frac{-3}{1 - 3} = \frac{34}{1 - 3} = \frac{34}{1 - 3}$$

$$\frac{1 - 3 + 6 - 34}{1 - 3 + 8 = 0}$$

$$x^{2} - 3x + 8 = 0$$

$$x = 2 \pm \sqrt{(-3)^2 - 4(1)(8)}$$

$$0 = -2$$

$$2(1)$$

$$X = 2 \pm \sqrt{-28}$$

- 4) In a test kitchen, researchers have measured the radius of a ball of dough made with a new quick-acting yeast. Based on their data, the radius r of the dough ball, in centimeters, is given by $r = 5(1.05)^{\frac{1}{3}}$ after t minutes. Round the answers to the following questions to the nearest tenth of a cm.
 - a. What is the radius after 5 minutes?

$$r = 5.4 \, \text{cm}$$

$$r = 5(1.05)^{29/3}$$

r= 4,9cm

a)
$$4\sqrt[3]{81} + 2\sqrt[3]{72} - 3\sqrt[3]{24}$$

b)
$$\sqrt{28} + 4\sqrt{63} - 2\sqrt{7}$$
 $\sqrt{4}\sqrt{7} + 4\sqrt{9}\sqrt{7} - 2\sqrt{7}$
 $2\sqrt{7} + 4\sqrt{3}\sqrt{7} - 2\sqrt{7}$