Section 3.6 Systems of 3 Equations

Learning Goal: To understand how to solve systems of linear equations in three variables and use linear systems in three variables to model real life situations.

Essential Questions:

What is the process for finding the solutions to a system of equations with three unknowns?

What does it mean when a false statement is obtained? What does it mean when a true statement is obtained?

Warm Up:

1. x+2y=160.5x-y=10

The solution to the system of equations above (x, y). What is the value of x?

A) -2

- B) 2
- C) 18
- D) 36

2. $x^2 - 6x + 11 = y$ x = y + 1

The system of equations above is graphed in the xy-plane. Which of the following is the y-coordinate of an intersection point (x, y) of the graphs of the two equations?

- A) -4
- B) -2
- C) 2
- D) 4

3. If $x^4 - y^4 = -15$ and $x^2 - y^2 = -3$, what is the value of $x^2 + y^2$?

- A) 5
- B) 4
- C) 2
- D) 1

4.
$$2x + 3y = 5$$
$$4x + cy = 8$$

In the system of equations above, c is a constant. For what value of c will there be no solution (x, y) to the system of equations?

- A) 3
- B) 4
- C) 5
- D) 6

Vocabulary:

System of three linear equations - three equations in the same variable

<u>Solution</u> – an ordered triple (x, y, z) that satisfies all three equations.

Linear Combination Method (3-Variable Systems) -

Step 1 -	Use the linear combination method to rewrite the linear system in three variables as a linear system in two variables.
Step 2-	Solve the new linear system for both of its variables.
Step 3 -	Substitute the values found in Step 2 into one of the original equations and solve for the remaining variable.

Note: if you obtain a false equation, such as 0 = 1, in any step, then the system has no solution. If you do not obtain a false solution but obtain a true statement, such as 0 = 0, then the equation is an identity and the system will have infinitely many solutions.

x + y + z = 2Example 1: -x + 3y + 2z = 84x + y = 4 Example 2: x-2y-3z = -12x + y + z = 6x+3y-2z = 13

You Try:

$$5x + 2y - z = -7$$

1. $x - 2y + 2z = 0$
 $3y + z = 17$

x + y + z = 62. 2x - y + z = 33x - z = 0

x+3y+z=03. x+y-z=0x-2y-z=0 3x-2y+4z = 14. x+y-2z = 32x-3y+6z = 8

$$x - 2y + 3z = -4$$

5. $y - z = 3$
 $z = -1$

$$2x + 3y - z = 4$$

6.
$$4x + 6y - 2z = 6$$
$$-2x + y + z = -2$$

$$x + 2y - 3z = -8$$

7.
$$2x + y + 3z = 17$$
$$x - 3y + 3z = 11$$

$$x + 2y - 4z = 2$$

8. $-x + 2y - 4z = -2$
 $-x - 2y + 4z = -2$

$$x + y + z = 5$$

9.
$$2x - y + z = 4$$
$$3x - y + 2z = 8$$

Closure:

Homework: